\qquad
\qquad
\qquad

Lesson Graphing Cubic Functions

Practice and Problem Solving

Calculate the reference points for each transformation of the parent function $f(x)=x^{3}$. Then graph the transformation. (The graph of the parent function is shown.)

1. $g(x)=(x-3)^{3}+2$
2. $g(x)=-3(x+2)^{3}-2$

Write the equation of the cubic function whose graph is shown.
3.

4.

\qquad

Solve.

5. The graph of $f(x)=x^{3}$ is reflected across the x-axis. The graph is then translated 11 units up and 7 units to the left. Write the equation of the transformed function.
6. The graph of $f(x)=x^{3}$ is stretched vertically by a factor of 6 . The graph is then translated 9 units to the right and 3 units down. Write the equation of the transformed function.
\qquad
\qquad Class \qquad

LEsson $5-1$ Graphing Cubic Functions

Practice and Problem Solving

Calculate the reference points for each transformation of the parent function $f(x)=x^{3}$. Then graph the transformation. (The graph of the parent function is shown.)
7. $g(x)=-\frac{5}{2}(x-3)^{3}+\frac{1}{2}$
8. $g(x)=1.25(x+5)^{3}-1.25$

\qquad
\qquad
Write the equation of the cubic function whose graph is shown.
9.

10.

\qquad
\qquad

Solve.
11. The graph of the function $y=3(x-2)^{3}+7$ is translated 2 units to the right and then 4 units down. Write the equation of the final graph.
12. The graph of the function $y=(x)^{3}+5$ is translated 2 units to the left and then reflected across the x-axis. Write the equation of the final graph.

